Program Listing for File utility.h
↰ Return to documentation for file (codes/pose_graph/utility/utility.h
)
/*******************************************************
* Copyright (C) 2019, Robotics Group, Nanyang Technology University
*
* \file utility.h
* \author Zhang Handuo (hzhang032@e.ntu.edu.sg)
* \date March 2017
* \brief Some common maths operators.
*
* Licensed under the GNU General Public License v3.0;
* you may not use this file except in compliance with the License.
*
*******************************************************/
#pragma once
#include <cmath>
#include <cassert>
#include <cstring>
#include <eigen3/Eigen/Dense>
namespace pose_graph {
class Utility {
public:
#ifndef DOXYGEN_SHOULD_SKIP_THIS
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
#endif /* DOXYGEN_SHOULD_SKIP_THIS */
template<typename Derived>
static Eigen::Quaternion<typename Derived::Scalar> deltaQ(const Eigen::MatrixBase<Derived> &theta) {
typedef typename Derived::Scalar Scalar_t;
Eigen::Quaternion<Scalar_t> dq;
Eigen::Matrix<Scalar_t, 3, 1> half_theta = theta;
half_theta /= static_cast<Scalar_t>(2.0);
dq.w() = static_cast<Scalar_t>(1.0);
dq.x() = half_theta.x();
dq.y() = half_theta.y();
dq.z() = half_theta.z();
return dq;
}
template<typename Derived>
static Eigen::Matrix<typename Derived::Scalar, 3, 3> skewSymmetric(const Eigen::MatrixBase<Derived> &q) {
Eigen::Matrix<typename Derived::Scalar, 3, 3> ans;
ans << typename Derived::Scalar(0), -q(2), q(1),
q(2), typename Derived::Scalar(0), -q(0),
-q(1), q(0), typename Derived::Scalar(0);
return ans;
}
template<typename Derived>
static Eigen::Quaternion<typename Derived::Scalar> positify(const Eigen::QuaternionBase<Derived> &q) {
//printf("a: %f %f %f %f", q.w(), q.x(), q.y(), q.z());
//Eigen::Quaternion<typename Derived::Scalar> p(-q.w(), -q.x(), -q.y(), -q.z());
//printf("b: %f %f %f %f", p.w(), p.x(), p.y(), p.z());
//return q.template w() >= (typename Derived::Scalar)(0.0) ? q : Eigen::Quaternion<typename Derived::Scalar>(-q.w(), -q.x(), -q.y(), -q.z());
return q;
}
template<typename Derived>
static Eigen::Matrix<typename Derived::Scalar, 4, 4> Qleft(const Eigen::QuaternionBase<Derived> &q) {
Eigen::Quaternion<typename Derived::Scalar> qq = positify(q);
Eigen::Matrix<typename Derived::Scalar, 4, 4> ans;
ans(0, 0) = qq.w(), ans.template block<1, 3>(0, 1) = -qq.vec().transpose();
ans.template block<3, 1>(1, 0) = qq.vec(), ans.template block<3, 3>(1, 1) = qq.w() *
Eigen::Matrix<typename Derived::Scalar, 3, 3>::Identity() +
skewSymmetric(qq.vec());
return ans;
}
template<typename Derived>
static Eigen::Matrix<typename Derived::Scalar, 4, 4> Qright(const Eigen::QuaternionBase<Derived> &p) {
Eigen::Quaternion<typename Derived::Scalar> pp = positify(p);
Eigen::Matrix<typename Derived::Scalar, 4, 4> ans;
ans(0, 0) = pp.w(), ans.template block<1, 3>(0, 1) = -pp.vec().transpose();
ans.template block<3, 1>(1, 0) = pp.vec(), ans.template block<3, 3>(1, 1) = pp.w() *
Eigen::Matrix<typename Derived::Scalar, 3, 3>::Identity() -
skewSymmetric(pp.vec());
return ans;
}
static Eigen::Vector3d R2ypr(const Eigen::Matrix3d &R) {
Eigen::Vector3d n = R.col(0);
Eigen::Vector3d o = R.col(1);
Eigen::Vector3d a = R.col(2);
Eigen::Vector3d ypr(3);
double y = atan2(n(1), n(0));
double p = atan2(-n(2), n(0) * cos(y) + n(1) * sin(y));
double r = atan2(a(0) * sin(y) - a(1) * cos(y), -o(0) * sin(y) + o(1) * cos(y));
ypr(0) = y;
ypr(1) = p;
ypr(2) = r;
return ypr / M_PI * 180.0;
}
template<typename Derived>
static Eigen::Matrix<typename Derived::Scalar, 3, 3> ypr2R(const Eigen::MatrixBase<Derived> &ypr) {
typedef typename Derived::Scalar Scalar_t;
Scalar_t y = ypr(0) / 180.0 * M_PI;
Scalar_t p = ypr(1) / 180.0 * M_PI;
Scalar_t r = ypr(2) / 180.0 * M_PI;
Eigen::Matrix<Scalar_t, 3, 3> Rz;
Rz << cos(y), -sin(y), 0,
sin(y), cos(y), 0,
0, 0, 1;
Eigen::Matrix<Scalar_t, 3, 3> Ry;
Ry << cos(p), 0., sin(p),
0., 1., 0.,
-sin(p), 0., cos(p);
Eigen::Matrix<Scalar_t, 3, 3> Rx;
Rx << 1., 0., 0.,
0., cos(r), -sin(r),
0., sin(r), cos(r);
return Rz * Ry * Rx;
}
static Eigen::Matrix3d g2R(const Eigen::Vector3d &g);
template<size_t N>
struct uint_ {
};
template<size_t N, typename Lambda, typename IterT>
void unroller(const Lambda &f, const IterT &iter, uint_<N>) {
unroller(f, iter, uint_<N - 1>());
f(iter + N);
}
template<typename Lambda, typename IterT>
void unroller(const Lambda &f, const IterT &iter, uint_<0>) {
f(iter);
}
template<typename T>
static T normalizeAngle(const T &angle_degrees) {
T two_pi(2.0 * 180);
if (angle_degrees > 0)
return angle_degrees -
two_pi * std::floor((angle_degrees + T(180)) / two_pi);
else
return angle_degrees +
two_pi * std::floor((-angle_degrees + T(180)) / two_pi);
};
};
}